Finding the right combination antiviral therapy for influenza

Influenza results in annual epidemics and global pandemics of acute respiratory illness that increases morbidity, mortality, and hospital admissions. Fortunately, there are currently two classes of antivirals licensed for the treatment of influenza in much of the world: the M2 inhibitors (amantadine and rimantadine) and the neuraminidase inhibitors (oseltamivir, peramivir and zanamivir). There are also other antivirals licensed in Asia (laninamivir and favipiravir) and Russia (umifenovir). Additionally, a wide range of novel antivirals have been or are being studied in the treatment of influenza. Available therapies reduce the duration of clinical symptoms and duration of viral shedding.

Despite the expanding number of available treatments, there are limitations to our current antivirals for influenza. Decay in viral shedding with the use of current antivirals is modest at best, clinical improvement is better the earlier the antiviral is started relative to onset of symptoms, and resistance is a constant threat. Resistant variants of influenza virus could be detected frequently during the use of M2 inhibitors. Widespread circulation of M2 inhibitor resistance emerged in 2003–04 and is currently established in all circulating influenza A strains. All influenza B viruses are intrinsically resistant to the M2 inhibitors. Neuraminidase inhibitor resistance can emerge from changes in the neuraminidase gene, the haemagglutinin gene, or both genes. Although most circulating strains of influenza remain susceptible to the neuraminidase inhibitors, emergence and persistence of resistance can occur, which was clearly shown with the emergence of oseltamivir-zanamivir combination was less effective than oseltamivir monotherapy, and not more effective than zanamivir monotherapy. A phase 2 study of oseltamivir plus plasma has shown that the combination was no different from oseltamivir in time to normalisation of patients’ respiratory status but was associated with a numerical reduction in duration of hospital stay and days of mechanical ventilation. Several studies of other combinations, including oseltamivir and nitazoxanide compared with placebo (NCT01610245) and the individual drugs and oseltamivir plus either influenza-specific convalescent plasma or hyperimmune globulin (NCT01052480, NCT02572817, NCT02008578) are being done.

In vitro and animal data suggest that a triple combination of amantadine, oseltamivir, and ribavirin has improved efficacy against influenza, even in amantadine-resistant viruses. In The Lancet Infectious Diseases, John H Beigel and colleagues report the results from a randomised, double-blind study of a triple combination (oseltamivir 75 mg, ribavirin 600 mg, and amantadine 100 mg twice a day) compared with oseltamivir (75 mg twice a day). 394 (62%) of 633 participants randomly assigned to treatment had confirmed influenza and had virology samples on day 3. The combination treatment resulted in fewer patients having detectable virus on day 3 (80 [40%] of 200 participants) than in the monotherapy group (97 [50%] of 194 participants, p=0.046), but had no effect on the duration of symptoms (4·5 days vs 4·0 days, p=0·21).

Although a scarcity of clinical benefit is frustrating, the improvement in viral shedding and the theoretical benefit in preventing resistance emergence suggest that studies of combination therapy should continue.
to be investigated. Furthermore, newer antivirals are becoming available that have different mechanisms of action. Combinations of two or more drugs with different mechanisms of action hold greater promise in enhancing the outcomes of influenza compared with monotherapy and should continue to be studied.7

Combination therapies should be studied in populations that have prolonged shedding and enhanced risk of emergence of resistance, including patients admitted to hospital and immunocompromised patients. Additionally, studies of virus subtypes with enhanced risk of resistance emergence, such as influenza A H7N9, which has been documented to have resistance develop, risk of resistance emergence, such as influenza A H7N9, should be considered.15

Michael G Ison
Divisions of Infectious Diseases and Organ Transplantation, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
migion@northwestern.edu

MGI has received research support, paid to Northwestern University, from Beckman Coulter, Cepheid, Chimerix, Gilead, Jansen, and Shire; he has received compensation from Chimerix as a consultant, has received payments as a consultant from Celltrion, Cepheid, Chimerix, Genentech/Roche, Toyama/MediVector, Seqirus, and Shionogi; he has provided unpaid consultation to BioCryst, Cellex, GlaxoSmithKline, NexBio, Romark, Unither Virology, and Vertex; and he is a paid member of data and safety monitoring boards for GlaxoSmithKline and Shionogi.

2 Hayden FG. Newer influenza antivirals, biotherapeutics and combinations. Influenza Other Respir Viruses 2013; 7 (suppl 1): 65–75.
5 Nguyen HT, Fry AM, Gubareva LV. Neuraminidase inhibitor resistance in influenza viruses and laboratory testing methods. Antivir Ther 2012; 17 (part B): 159–73.